Matrix-Variate Distribution of Training Models for Robust Speaker Adaptation

نویسندگان

  • Yongwon Jeong
  • Young Kuk Kim
چکیده

In this paper, we describe a new speaker adaptation method based on the matrix-variate distribution of training models. A set of mean vectors of hidden Markov models (HMMs) is assumed to be drawn from the matrix-variate normal distribution, and bases are derived under this assumption. The resulting bases have the same dimension as that of the eigenvoice, thus adaptation can be performed using the same equation. In the isolated-word experiments, the proposed method showed a comparable performance with the eigenvoice in a clean environment, and showed better performance than the eigenvoice in both babble and factory floor noises. The experimental results demonstrated the validity of the matrix-variate normal assumption about the training models, thus the proposed method can be used for rapid speaker adaptation in noise environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Acoustic Model Training Using Pseudo-Speaker Features Generated by MLLR Transformations for Robust Speaker-Independent Speech Recognition

A novel speech feature generation-based acoustic model training method for robust speaker-independent speech recognition is proposed. For decades, speaker adaptation methods have been widely used. All of these adaptation methods need adaptation data. However, our proposed method aims to create speaker-independent acoustic models that cover not only known but also unknown speakers. We achieve th...

متن کامل

Training Robust Acoustic Models Using Features of Pseudo-Speakers Generated by Inverse CMLLR Transformations

In this paper a novel speech feature generationbased acoustic model training method is proposed. For decades, speaker adaptation methods have been widely used. All existing adaptation methods need adaptation data. However, our proposed method creates speaker-independent acoustic models that cover not only known but also unknown speakers. We do this by adopting inverse maximum likelihood linear ...

متن کامل

Improved Jacobian Adaptation for Robust Speaker Verification

Jacobian Adaptation (JA) has been successfully used in Automatic Speech Recognition (ASR) systems to adapt the acoustic models from the training to the testing noise conditions. In this work we present an improvement of JA for speaker verification, where a specific training noise reference is estimated for each speaker model. The new proposal, which will be referred to as Model-dependent Noise ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011